
Statistical Shape Analysis for Applications in Image
Segmentation

by

Pradyot Prakash

Roll No: 130050008

under the guidance

of

Prof. Suyash Awate

Bachelors’ of Technology Thesis (II)

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Declaration

I declare that this written submission represents my ideas in my own words and where

other’s ideas or words have been included, I have adequately cited and referenced the orig-

inal sources. I also declare that I have adhered to all principles of academic honesty and

integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in

my submission. I understand that any violation of the above will be cause for disciplinary

action by the Institute and can also evoke penal action from the sources which have thus

not been properly cited or from whom proper permission has not been taken when needed.

Date: 28th April, 2017 Pradyot Prakash

Place: IIT Bombay, Mumbai Roll No: 130050008

ii

Acknowledgements

I am thankful to the people who have been instrumental in helping me out throughout

this project. First and foremost, I express my sincere gratitude towards my supervisor

Prof. Suyash Awate for his guidance. I would also thank Saurabh Shigwan for helping me

out throughout the duration of this project. I am also thankful to my friends, family, and

teachers who have been always there for me whenever I needed them.

iii

Contents

1 Introduction 2

2 Shape Analysis 3

2.1 Shape representation . 3

2.2 Invariance of the preshape space . 5

2.2.1 Translation invariance . 6

2.2.2 Scale invariance . 6

2.2.3 Translation and scale invariance 6

3 Manifolds 7

3.1 Riemannian manifolds . 7

3.1.1 The notion of distance . 7

3.1.2 Exponential and logarithm maps 8

3.2 Shape analysis and Riemannian manifolds 9

4 Learning on Riemannian manifold 10

4.1 Dictionary learning . 10

4.2 Learning the PCA basis . 11

4.2.1 Euclidean PCA . 11

4.2.2 Riemannian PCA . 12

5 Learning PCA basis from images 13

iv

6 Finding the segmentation 15

6.1 Binarizing a contour . 15

6.2 The similarity measure . 15

6.2.1 Rationale behind Sim . 16

6.2.2 Finding the probabilities . 17

6.3 Objective function . 17

6.4 Optimization algorithm . 17

7 Experiments 19

7.1 Ellipses . 19

7.1.1 Tuning τ . 22

7.1.2 Numerical issues . 23

7.1.3 Results after smoothening . 26

7.2 Cap bone . 26

8 Conclusion 30

9 Future Work 31

v

List of Tables

vi

List of Figures

5.1 Hierarchical model to learn shapes . 14

7.1 The ellipses we want to segment out . 20

7.2 One example ellipse . 21

7.3 Binarized fitted ellipse contours . 23

7.4 Absolute difference of intensities of uncorrupted data and fitted ellipses . . 24

7.5 Objective functions for non-smoothened and smoothened ellipses 25

7.6 Objective functions for a smoothened ellipse as a function of s and wi . . . 26

7.7 An example ellipse after smoothing . 27

7.8 Absolute difference of intensities of data and fitted ellipses 28

1

Chapter 1

Introduction

Researchers working in the field of image processing have tried to find succinct ways of

representing images. The usual notation containing intensity values of each pixel is not

interesting and does not exploit the structure within the image. The application of Fourier

transform through frequency based analysis has been present for a long time. The Fourier

transform and its neighbor, discrete cosine transform are universal bases used for image

representation. However, they miss out on identifying the locality within the images. For

instance, the Fourier transform of a box function gives us a sinc function but we can’t

pinpoint its exact coordinates. To alleviate this inefficiency, other kinds of bases such as

contourlets and wavelets have been used. We see the application of PCA basis as another

such method.

The work in the last semester through BTP (I) used the notion of dictionaries to learn

meaningful shape contours. This report summarizes the work done there and extends that

using the PCA basis applied to images for segmentation under the purview of Shape Anal-

ysis.

The novel idea behind this work is the introduction of a new similarity measure between

shape contours and images. That forms an integral part of the optimization function to get

a good fit.

2

Chapter 2

Shape Analysis

This section refers to method developed in [1] [3] and [2]. Shapes play an important role

in medical image processing. Most body parts have a fixed shape and structure. Defects

and diseases can often be identified by analysis of the structural changes in them. This

motivates one strong reason for the study of shapes.

2.1 Shape representation

One primary issue that arises while dealing with shapes is how to represent them. A shape

is a continuous curve and we choose some k points on it to get a discrete sampling. If

the shape is in a d dimensional space, then we essentially get d × k dimensional shape

space. Here we work with images for which d = 2 or d = 3. Let’s denote a 2D shape, S

using S =

x(1)1

x
(2)
1

 ,

x(1)2

x
(2)
2

 . . .

x(1)k
x
(2)
k

 where

x(j)2

x
(j)
2

 are points defining the shape

boundary. Note that these are all points on the same curve and not points on different

curves. Similarly, for 3D images, the corresponding points are vectors in R3.

To study shapes, we convert these set of points to a vector by concatenating the points.

The vector representing the previous curve takes the form

Xi = [x
(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 , . . . , x

(1)
k , x

(2)
k]T

3

.

One issue resolved, there are more. The difficulty in coming up with a general notion

of shape is difficult because of 4 factors:

1. Translation: Moving the image does not alter its shape

2. Scaling: Changing the scale by the same factor along all the axes also maintains the

shape

3. Rotation: By changing the orientation of the image, the shape remains unaltered

4. Reflection: Reflection about a place or axis also keeps the shape same. We won’t be

dealing with reflections as part of this thesis

Hence, before moving on to analyzing shapes and their similarities, we need to remove

the first three factors mentioned above. If this were not so then the notion of distance

between two shapes won’t be meaningful. We need to get them to a common coordinate

frame and that is done step by step as follows:

1. Translation: To get away with this, we shift the centroid of the shape to the origin.

This gives us a consistent notion of placement of a shape in the coordinate axis — at

the origin. The centroid, µ of a shape S is

µ =
1

k

k∑
i=1

x(1)i
x
(2)
i

To remove translation, x̄i = xi − µ. This is then further converted to the combined

vector representation X̄i.

2. Scaling: We set the variance of X̄i to 1 by dividing it by its norm to consistently get

a unit norm shape

3. Rotation: As discussed above, we get the same shape on rotation. So if we have

two shapes, S1 and S2, the distance between them would have been defined between

4

them as,

d(S1,S2) = ‖S1 − S2‖2F

This is essentially measuring how far away the component points of the shapes are

far away from each other. However, note that we can possibly find a smaller distance

between them by rotating the shapes and aligning them to each other using some

distance metric. This idea is captured by what is called the Procrustes distance. We

find an orthogonal rotation matrix, Ω, which finds the nearest shape for a given shape

such that,

Ωopt = arg min
Ω∈Rd×d

‖ΩS1 − S2‖2F

ΩTΩ = I, det(Ω) = 1

This finds the “nearest” shape in the squared error sense. We will use this to align one

shape with other. This above problem has a closed form solution given by Ωopt =

UVT where U and V are the left and right singular matrices of M = S2ST
1 . If

det(Ωopt) = −1 then we flip the sign of one of the left singular values. MATLAB

does this internally through the function procrustes().

By removing translation, we are setting the centroid of the shape to origin. This is

equivalent to imposing a linear constraint of the form x
(1)
1 + x

(2)
1 + x

(1)
2 + x

(2)
2 + · · · +

x
(1)
k + x

(2)
k = 0 which is a hyperplane in a kd dimensional space. By removing scale,

we are essentially setting the norm of X̄i to 1 and hence projecting it on a unit norm

hypersphere in a kd dimensional space. The combination of both these constraints is similar

to the intersection of the hyperplane with the hypersphere. This space is referred to as the

preshape space (PSS).

2.2 Invariance of the preshape space

One important consideration is that we want the rotation operation to preserve the preshape

invariance. This indeed turns out to be true under the Frobenius norm condition.

5

2.2.1 Translation invariance

Suppose we have a shape matrix, Sd×k. Let S = [s1, s2, .., sk], where si are the columns

of S. Assume that S ∈ PSS. Hence, we have
∑

i si = 0. By pre-multiplying S by any

arbitrary matrix R ∈ Rd×d, we get RS = R[s1, s2, .., sk] = [Rs1,Rs2, ..,Rsk]. Sum of

columns of RS gives
∑

i Rsi = R(
∑

i si) = R0 = 0. Hence, RS has zero mean.

2.2.2 Scale invariance

We know that a rotation matrix is given by RTR = I and det(R) = 1. For the ma-

trix RS, Frobenius norm is ‖RS‖F =
√
trace((RS)TRS) =

√
trace(STRTRS) =√

trace(STS) = SF . Hence, is S is a shape matrix, then RS also has norm 1.

2.2.3 Translation and scale invariance

From the previous two results, we see that if R is a rotation matrix then the matrix RS ∈

PSS. Hence, a rotation matrix preserves the translation and scale invariance.

6

Chapter 3

Manifolds

A manifold M of dimension d is a topological space such that each point x ∈ M has a

neighborhood which can be continuously transformed into a Euclidean space of the same

dimension. More formally, the neighborhood is homeomorphic to the Euclidean space, Rd.

With the additional property of being able to perform differential calculus on the manifold,

it becomes a differential manifold.

3.1 Riemannian manifolds

Every differential manifold has a tangent space associated with it. The tangent space, TxM

defined at x ∈ M is the vector space containing all the tangent vectors toM at the point

x. With the additional constraint of having an inner product on the tangent space, TxM,

we get the Riemannian manifold.

3.1.1 The notion of distance

Let v ∈ TxM be a tangent vector to M at x. There exists a unique smooth curve, a

geodesic,

γv : [0, 1]→M

satisfying γv(0) = x with initial tangent vector in the direction of v, γ′v(0) = v.

7

Suppose x and y are two points onM. The distance function d :M×M→ [0,∞) is

defined as,

d(x, y) = inf
γ
{x, y ∈ γ}

In simpler terms, the distance between them is the minimum length of all the curves that

start at x and end at y.

3.1.2 Exponential and logarithm maps

We can simply add or subtract two vectors to get the third one. However, if we apply the

same notion over here, we may get a point which does not lie on the manifold. Hence it

becomes important to define the operations of addition and subtraction carefully. There are

two important functions which do this — exp and log.

The exponential map expx : TxM→M is defined as,

expx(v) = γv(1)

This signifies that point onM which lies in the direction of v and is one unit distance away

from x. Let’s give this an informal interpretation. The constant e is defined to be the limit

limx→0(1 + x)
1
x from calculus. This can be understood as adding some small quantity to

1 and see what it is, followed by adding a small quantity to this new entity and repeating

the operating infinite number of times. The exponential map is analogous. Since directly

adding two points on a manifold may push it away from it, we add small increments to a

point several times until we have reached a point which a 1 unit away from it in a particular

direction. These small increments help ensure that we are still on the manifold and the

operations are meaningful. The inverse of the exponential map is the logarithm map,

logx :M→ TxM

Under some assumptions of the global existence of the exp and the log maps, we get the

following two important results:

1. d(x, y) = || logx(y)||x where ||v||x is the length of the vector v ∈ TxM

8

2. d2(x, .) is a smooth function for all x ∈M

3.2 Shape analysis and Riemannian manifolds

Riemannian manifolds naturally occur while studying shapes. Note that we project the

shapes into the PSS. This sets the norm of the shape matrix to 1 and puts it on a hyper-

sphere. The PSS is a subset of this hypersphere because of its intersection with a plane.

Hence, the normal notion of Euclidean distance does not make sense on a hypersphere and

we exploit its Riemannian manifold nature. To get a distance measure, we need a geodesic

and in this case it turns out to be the great circle joining two points. The exponential and

logarithmic maps for a hypersphere is defined as:

expa(v) = cos(|v|)a + sin(|v|) v

|v|

loga(v) =
u cos−1(aTv)√

uTu

where u = v − (aTv)a.

9

Chapter 4

Learning on Riemannian manifold

Suppose we have a set of points X1,X2, ..,Xn,Xi ∈ PSSdk ∀i where PSSdk is the

preshape space of shapes originally in Rd×k.

4.1 Dictionary learning

The usual definition of a dictionary searches for a set A, whose linear combination gives

us the best set of points X . However, this linear combination makes no sense on a sphere.

Hence, we want to look for a generalization of Xi = AWi since our spherical manifold

does not support a global vector space structure. Riemannian manifolds help us in this

regard by providing a tangent space, TxM, at point a x ∈ M (Riemannian manifold)

which allows us to extract global information using the exponential and logarithm maps.

Unlike the Euclidean case where we could exploit the vector structure we do not have

that freedom here. The notion of “origin” is not present here since the tangent space is

locally defined. The point x can be interpreted as the origin for TxM. Since we want to

model the linear reconstruction nature of dictionaries forM, we impose an affine constraint

on the coefficients. So if,

Xi = w1iA1 + w2iA2 + · · ·+ wmiAm

10

then by setting

w1i + w2i + · · ·+ wmi = 1

for each i gives us an origin independent environment.

[5] shows that

min
A,W

n∑
i=1

∥∥∥∥∥
m∑
j=1

Wij logxi(Aj)

∥∥∥∥∥
2

xi

+ λ ‖W‖1

m∑
j=1

Wij = 1,∀i = 1, 2, . . . , n

is a good optimization problem for learning the dictionaries onM.

For unit spheres, on putting the appropriate log function, this boils down to,

min
A,W

n∑
i=1

∥∥∥∥∥
m∑
j=1

Wij cos−1(〈Xi,Aj〉)
uij

|uij|

∥∥∥∥∥
2

xi

+ λ ‖W‖1

uij = Aj − 〈Xi,Aj〉Xi

m∑
j=1

Wij = 1,∀i = 1, 2, . . . , n

where 〈 , 〉 is the vector dot product.

4.2 Learning the PCA basis

4.2.1 Euclidean PCA

The Principal Component Analysis tries to find an orthogonal basis, A = [A1,A2, ..,Ap],

ATA = I which captures the maximum variance in the data. PCA tries to reconstruct the

data using a linear combination of the basis vectors. It minimizes the following objective,

min
A,Wi

m∑
i

‖Xi −AWi‖2F

where Xi,Wi ∈ Rp.

11

The directions of maximum variance turn out to be the eigenvectors of the covariance

matrix, C =
∑m

i X̄iX̄i
T
/(m− 1) where X̄i = Xi − µ, µ =

∑m
i Xi/m. The eigenvectors

are normalized to norm 1 and established as the columns of A. Once we have A, the

coefficients Wi are simply Wi = ATXi.

4.2.2 Riemannian PCA

PCA works great for points in the Euclidean space because the Euclidean distance or the

straight line distance is used. However, if we have to learn a similar basis on a hypersphere,

we will have to modify the approach slightly. We need to counter two issues - (i) finding

the mean vector and (ii) learning the directions of variance.

The tangent space associated with points in the Riemannian manifold come into picture

here. If we somehow are able to get the points to the tangent space, we can apply the

Euclidean operations there and borrow the concepts from the previous part. The algorithm

is highlighted in 1.

Algorithm 1
1: Input: X1,X2, . . .Xm

2: set µ = X1

3: repeat

4: Xlog
i = logµ(X̂i) ∀ i where X̂i is aligned with µ

5: µnew = expµ(1
n

∑
i X

log
i)

6: µ = µnew

7: until µ converges

8: C =
∑

i X
log
i (Xlog

i)T

9: Find the eigen decomposition of C as CVi = λiVi

Hence, a point X = expµ(VW) where W = VT logµ(X).

12

Chapter 5

Learning PCA basis from images

For the real world scenario, there aren’t contours but rather images. We want to learn an

image segmentation model from images. This is not so trivial because we do not have a set

of landmark points defining the boundary of the contour and only have the segmentation

with us.

To address this, a hierarchical model [4] is defined with the inclusion of some hidden

variables. We model the top layer as a Gaussian with mean µ and covariance C. From this,

a hidden layer of another Gaussian is derived (mean z1, covariance C1) which models the

observed data points, y1i. The β’s used in the figure 5.1 are the smoothness parameters of

a MRF. While modeling, we need to specify the number of landmark points that the model

has to look for. This information is inherent in the number of dimensions of µ.

For this approach to work, we need to inundate the boundary of the segmentation using

a few marker points, x1ij’s. The number of such points may vary from image to image and

need not be equal. We align each x1ij with the closest sampled from the z1,C1 distribution.

Appropriate distance metrics are defined to make a MAP estimate to learn the best set of

parameters. A Riemannian PCA-based approach is used to model the likelihood.

13

Figure 5.1: Hierarchical model to learn shapes

14

Chapter 6

Finding the segmentation

Now that we have the basics in place, the only task that remains is to segment an image.

Over here, we are trying to fit a shape model over a section of the image and hope that it

actually corresponds to the region that needs to be segmented out. This involves solving an

optimization problem. But before that, we need to define a similarity measure between a

shape contour and an image.

6.1 Binarizing a contour

A simple way to define a similarity measure is by first converting the contour into an image

and then comparing the two images somehow. A binarization function Bin(c, h) takes a

contour, c, and the size of the image, h, and gives a binary image, I , such that the region

inside the contour has intensity 1 and the outside region has intensity 0. Now that we have

two images, it is easy to define a distance measure between them.

6.2 The similarity measure

Suppose we have an image with a region that we want to segment out. Also, with each

pixel within the image, let us associate a probability (rather a probability density) of the

15

pixel intensity lying inside the region of interest or outside it. Let us denote the respective

probabilities with Pin(I(p)) and Pout(I(p)) for a pixel p in an image I .

Now, we define our similarity measure between an image I of size h× h and a contour

c as,

Sim(c, I) =
1

h2

∑
p∈I

Bin(c, h). ∗ log
Pin(I(p))

Pout(I(p))

where Bin(., .) is as defined above.

6.2.1 Rationale behind Sim

For a pixel p which lies within the segmented region, we would expect that Pin(I(p)) >

Pout(I(p)), and vice versa for a point lying outside. Hence, for the inside points log Pin(I(p))
Pout(I(p))

>

0. Hence, the similarity measure essentially finds the sum of the log probability ratios for

the pixels which lie inside the binarized contour. Suppose that the contour c covered the

entire image. In this case, we have a sum over the log probability ratios of the entire image.

Since the actual segmentation lies somewhere inside the image, we would have a mix of

positive and negative values. This would bring down the objective value. On the other

hand, if the contour coincides with the correct segmentation, then the sum spans only the

positive values of the log ratio which corresponds to the maximum sum we can get. If

this optimal contour is perturbed slightly, we have some negative values coming inside the

contour which reduces the value of the summation. If this contour had no overlap with any

pixel inside the actual segmentation, the entire sum will be negative. These observations

suggest that we try to maximize the sum.

This idea makes sense as the Bin(., .) term tries to maximize the spread and the log

term tries to make the spread smaller. This kind of behavior leads to a maxima, perhaps a

local one. This term is divided by the number of pixels, h2, for normalization.

16

6.2.2 Finding the probabilities

To find the inside and the outside probabilities, we assume two separate Gaussian distribu-

tions over the inside and outside regions. This gives us 4 parameters, µin, µout, σin and σout

to optimize for.

Pin(x) =
1√

2πσ2
in

exp−(x−µin)
2/2σ2

in

Pout(x) =
1√

2πσ2
out

exp−(x−µout)
2/2σ2

out

6.3 Objective function

Suppose we have the Riemmanian PCA model learned according to the previous mentioned

approach. What remains is to use that model to segment out the image. Let V1,V2, . . . ,Vp

be the eigenvectors in TµM, the tangent space of µ. We look for coefficients in TµM and

take their linear combination to get a point G =
∑

i Viwi in TµM. This is projected on to

the sphere using the expµ map as J = expµ(G). J is reshaped to get a shape matrix, S. S

is then rotated and scaled appropriately. This is further translated to get the final contour.

Maximizing Sim(., .) is equivalent to minimizing the negative of the function. This finally

gives us our objective function as defined below:

min
s,R,t,wi

−Sim(Bin(sRreshape(expµ(
∑
i

Viwi) + t), h), I) + τ
∑
i

| wi√
λi
| (6.1)

Here the second term corresponds to the regularization and sparsity we impose on the

eigenvalues λi’s. We also introduce a hyperparameter τ to control the relative importance

of the two terms.

6.4 Optimization algorithm

The iterative optimization algorithm takes the form as given in algorithm 2.

17

Algorithm 2
1: Input: image I

2: initialize contour c, µin, µout, σin and σout

3: repeat

4: find optimal c based on the above defined objective

5: make a hard partition based on c to demarcate the inside (I) and the outside (O)

regions

6: perform MLE for I and O separately to learn the respective set of parameters

7: until convergence

18

Chapter 7

Experiments

Several sets of experiments were tried out to fit the model to the data and learn the various

parameters involved in the optimization function.

7.1 Ellipses

The first set of experiment was performed on a simple dataset containing ellipses. The

ellipses were manually fabricated by fixing the major axis and the length of the minor axis

was varied to get 31 data points. Each ellipse has been traced by 36 contour points placed

on their boundary at 10-degree intervals. All the ellipses were projected onto the preshape

space and a Riemannian PCA model was learned using algorithm 1. The PCA model has

one primary mode of variation with sqrt(principal eigenvalue) = 0.14.

The Bin(., .) function was implemented by first setting the intensity of the pixels at

the landmark points to 1. This was followed by setting the intensities of the pixels on the

line joining two consecutive points to 1. Now that we have a closed loop of 1’s, we call

MATLAB’s imfill() to fill in the inside region.

The ellipse contours were used to generate images on which we want to test out the

segmentation. The images were of size 512 x 512 and the unit norm ellipses were appro-

priately scaled. Since this not a realistic scenario as real images have a fuzzy segmentation

19

and the region of interest lies in a fuzzy region, IID gaussian noise was added to these el-

lipses to get target images as shown in figure 7.1. One such ellipse has been zoomed in and

is shown in figure 7.2.

Figure 7.1: The ellipses we want to segment out

This is followed by fitting the PCA model to these images to learn the segmentation.

The optimization algorithm is an iterative approach as highlighted in algorithm 3. Since

20

Figure 7.2: One example ellipse

there is just one mode of variation, only one eigencoefficient needs to be fitted. Also, since

this a 2D image, we can get the rotation matrix using just a single parameter which models

the rotation around the origin. Scale adds up one parameter and 2 parameters are added for

translation in the 2D plane.

The initialization forwi is done close to 0, θ close to 0, t such that the contour is initially

aligned with the image and s between 0.8 to 1.2 times the actual scale. This is a good

guess because in practice we have an estimate of the actual image size and can get a rough

guess of where we need to initialize. In each step of algorithm 3, the MATLAB function

fminsearch() was used. This is a non-gradient-based optimization technique and is

well suited to our needs. This is because if we resorted to gradient-based approaches then

21

Algorithm 3
1: Input: image I, initial guesses for scale s, translation t, rotation θ, eigencoefficients wi,

µin, µout, σin and σout

2: repeat

3: repeat

4: find optimal θ using the optimization problem in equation 6.1

5: find optimal θ using the optimization problem in equation 6.1

6: find optimal θ using the optimization problem in equation 6.1

7: find optimal θ using the optimization problem in equation 6.1

8: until convergence

9: compute µin, µout, σin and σout

10: until convergence

unpredictable things might happen owing to the Bin(., .) function used for binarization.

The fitted shapes are shown in figure 7.3. The absolute difference of the intensities between

the (noiseless) target image and the learned images have been shown in figure 7.4.

We see that overall most of the ellipses have been properly learned except a couple of

them where the fits are poor. This was because the scales for these ellipses were incorrectly

learned and that hampered the optimization of θ and wi properly. However, with a different

initialization, this gets fixed. The means and variances for the inside and outside were

learned really well — µin ≈ 1, µout ≈ 0 and σin ≈ σout ≈ σoptimal.

7.1.1 Tuning τ

The optimal τ was found out to be close to 0. Setting it to any higher value, wi is penalized

strongly and the coefficients are fitted close to 0.

22

Figure 7.3: Binarized fitted ellipse contours

7.1.2 Numerical issues

A lot of numerical issues were encountered in this approach. This can be observed by

looking at figure 7.5. The first row corresponds to two kinds of images—non-smoothened

and smoothened images. These images are 256 x 256 in size. The second row plots the

variation of the objective function with wi. It is easy to observe that there are a lot of local

23

Figure 7.4: Absolute difference of intensities of uncorrupted data and fitted ellipses

minimas in the first case and this makes it extremely sensitive to initialization. A very

obvious approach looking at the function plots is to employ simulated annealing. But that

is an overkill and on further analysis, image resolution was the culprit.

This raggedness can be attributed to the Bin(., .) function. The mathematics assumes

that everything is continuous but while dealing with images, everything is discrete. So for

instance, while rotating an object, a 1-degree rotation may lead to no rotation at all because

24

the resolution may not be good enough. However, once the image is smoothened, the func-

tion also becomes smoother and is easier to deal with. On applying heavier smoothing on

the original shape, the function becomes even smoother (noise is added to this smoothened

image). Furthermore, as the image resolution is increased, all these artifacts go away. Fig-

ure 7.6 shows the plot of objective functions with respect to s and wi keeping the other

parameters set to their optimal. The minimas in these plots correspond to the optimal min-

imas.

(a) Non-smoothened (b) Smoothened

Figure 7.5: Objective functions for non-smoothened and smoothened ellipses

25

(a) With s (b) With wi

Figure 7.6: Objective functions for a smoothened ellipse as a function of s and wi

7.1.3 Results after smoothening

This section builds on the previous section and considers smooth ellipses to learn the fits.

On top of this, the mask to sum the log ratio values used in Sim(., .) is also smooth on

the edge. This helps to assign a decreasing weight to pixels near the boundary. Figure 7.7

shows one such ellipse and figure 7.8 shows the absolute difference for this case.

It is clear that here reconstruction errors are higher. This is because here µin < 1, and

this leads to a cascading effect on the other parameters and they are not able to learn as

good as in the previous case.

7.2 Cap bone

This section deals with learning the fits on 3D images. The images here are of the Capitate

bone that is found in our wrists. Unlike the previous case, we have 100 x 100 x 100 images

here, to begin with. So we can employ the ideas from Chapter 5 to learn a PCA model.

26

Figure 7.7: An example ellipse after smoothing

This model uses 482 landmark points to define a shape.

Two extra measures need to be taken for 3D shapes:

• Bin(., .) will not work as used for 2D images. Just by connecting the consecutive

points, we will not be able to make a closed shell and the imfill() won’t work.

To solve this, we need to fill all the triangles through which the hull of the shape

is defined. This requires iterating over all the triangular meshes and setting their

interior intensities to 1. After this is done, we get a closed shell and imfill() can

be applied on it.

• The rotation matrix is no longer defined in terms of a single rotation parameter but

27

Figure 7.8: Absolute difference of intensities of data and fitted ellipses

has 3 degrees of freedom, hence 3 parameters. Imposing a non-linear constraint of

9 variables through RTR = I and det(R) = 1 can lead to lot of numerical errors.

To circumvent this, we calculate R = exp(M) as the matrix exponential of a skew-

symmetric matrix,

28

M =

0 −c b

c 0 −a

−b a 0

With this structure of M,R corresponds to rotation around an axis parallel to [a, b, c]T

by an angle
√
a2 + b2 + c2.

Having resolved these, we still are left with important issues. The sqrt(top 2 eigen-

values) = (0.0411, 0307) are very small in this case. Owing to this, the optimal coefficients

would be small and close to each other. This presents numerical difficulties for the search

algorithm. Also, the binarization operation significantly slows down here because (i) we

have a larger number of pixels in the image to assign intensities to and (ii) because we have

to iterate over the triangle meshes and fill them with 1.

The

29

Chapter 8

Conclusion

The ideas mentioned in this paper revolve around shape analysis and efficient segmenta-

tion of images. Dictionaries and Riemannian PCA based concepts have been mentioned.

Although dictionary based segmentation methods were not implemented and tested, they

hold potential and could be explored in a future work. The use of a new similarity measure

between an image and a contour has been explored and that has guided the experiments. In

addition to theoretical concepts, numerical optimization has been a major bottleneck which

took a significant amount of time to solve.

We observe good results for segmentation using this measure and this certainly shows

potential of being applicable to a large number of 3D images.

30

Chapter 9

Future Work

The next steps involving making the model robust with respect to 3D images so as to

improve the fitting procedure. Furthermore, analysis and comparison with the segmentation

provided by ShapeWorks needs to be done.

Another extension of the project would be to implement the same ideas using a Rie-

mannian dictionary based approach and comparing the results.

31

Bibliography

[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models-their

training and application. Computer vision and image understanding, 61(1):38–59,

1995.

[2] C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the

Royal Statistical Society. Series B (Methodological), pages 285–339, 1991.

[3] D. G. Kendall. A survey of the statistical theory of shape. Statistical Science, pages

87–99, 1989.

[4] S. J. Shigwan and S. P. Awate. Hierarchical generative modeling and monte-carlo

EM in riemannian shape space for hypothesis testing. In Medical Image Computing

and Computer-Assisted Intervention - MICCAI 2016 - 19th International Conference,

Athens, Greece, October 17-21, 2016, Proceedings, Part III, pages 191–200, 2016.

[5] Y. Xie, J. Ho, and B. Vemuri. On a nonlinear generalization of sparse coding and

dictionary learning.

32

	Introduction
	Shape Analysis
	Shape representation
	Invariance of the preshape space
	Translation invariance
	Scale invariance
	Translation and scale invariance

	Manifolds
	Riemannian manifolds
	The notion of distance
	Exponential and logarithm maps

	Shape analysis and Riemannian manifolds

	Learning on Riemannian manifold
	Dictionary learning
	Learning the PCA basis
	Euclidean PCA
	Riemannian PCA

	Learning PCA basis from images
	Finding the segmentation
	Binarizing a contour
	The similarity measure
	Rationale behind Sim
	Finding the probabilities

	Objective function
	Optimization algorithm

	Experiments
	Ellipses
	Tuning
	Numerical issues
	Results after smoothening

	Cap bone

	Conclusion
	Future Work

