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Chapter 1

Introduction

Researchers working in the field of image processing have tried to find succinct ways of

representing images. The usual notation containing intensity values of each pixel is not

interesting and does not exploit the structure within the image. The application of Fourier

transform through frequency based analysis has been present for a long time. The Fourier

transform and it’s neighbor, discrete cosine transform are universal bases used for image

representation. However, they miss out on identifying the locality within the images. For

instance, the Fourier transform of a box-function gives us a sinc function but we can’t

pinpoint its exact coordinates. To alleviate this inefficiency, other kinds of bases such as

contourlets and wavelets have been used. We see the application of dictionaries as another

such method.

This project explores the ways in which dictionaries have been used in image processing

for tasks such as classification, denoising and shape analysis. A lot of work has been done

in these areas and we explore the possibility of extending the same idea using hyperspheres

and borrowing concepts from manifolds.
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1.1 Why dictionaries?

The transforms mentioned above are global bases of a Hilbert space. Because of such

nature, they are not adaptive to data and cannot adapt. Take the Fourier transform for

instance. We cannot represent edges using that. The wavelet transform is spatially local

and can represent edges using a small number of basis functions. But all these methods are

general and are analytically defined. We want something which is data dependent and can

be learned accordingly. Hence, we look towards dictionaries to pave the way.

1.2 Dictionaries

Dictionaries[5] can be understood as a generalization of the idea of bases in linear algebra.

The notion of dictionaries comes while trying to come up with a solution for the following

problem.

Suppose that we have a set of training data points, labeled as X1,X2, ..,Xn in some d

dimensional space. Define,

X = [X1X2 . . .Xn]

to be a d× n matrix. Our goal is to find a set called dictionary,

A = [A1A2 . . .Am]

containing m vectors in the d dimensional space such that X can be written as a linear

combination of A1,A2, . . . ,Am, i.e.,

Xi = w1iA1 + w2iA2 + · · ·+ wmiAm

which is equivalent to

Xi = AWi

where

Wi = [w1iw2i . . . wmi]
T
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For the sake of brevity, the entire composition can be written as,

X = AW

where

W = [W1W2 . . .Wn]

Note that the components of the set A are called atoms. Also, X ∈ Rd×n, A ∈ Rd×m

and W ∈ Rm×n. Our task at hand is to estimate both A and W given X. This can be

approximated by trying to minimize the error, ‖X−AW‖2F where ‖.‖F is the Frobenius

norm.

This is done by modeling this as the following optimization problem,

arg min
A,W

n∑
i=1

‖Xi −AWi‖2F

One may wonder as to how does a dictionary differ from the basis set. One can simply

choose A to be the d dimensional basis set and the coefficients can be accordingly com-

puted. Dictionaries differ in the sense that m may or may not be equal to d. The cardinality

of the basis set is what we call the dimension of the data, in our case, d. This basis set

can be used to represent all the vectors in the d dimensional space. However, for many

problems, we do not need to cover the entire wide space, but only a small subset of it. For

such cases, we consider a reduced basis of sorts, commonly called the dictionary. For some

cases, a small number of atoms, m < d can suffice and for other scenarios, we may need

more than d atoms.

Furthermore, the notion of orthogonality is often missing in dictionaries. Even in the

case of m = d, orthogonality may be missing. The number m is a hyper-parameter of

the model and needs to be guessed. The dictionary A is called undercomplete if m < d

or overcomplete in case m > d. The first case is similar to representing the data using

a smaller number of dimensions. The PCA algorithm tries to do something similar. The

second case motivates the sparse dictionary learning problem. The usual notion of dictio-

naries is extended by to include sparsity in the W matrix. We wish to be able to represent
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Xi using only a subset of A. To account for this, the optimization problem is tweaked

slightly to look like,

arg min
A,W

n∑
i=1

‖Xi −AWi‖2F + λf(W)

Here, f(.) is some function defining the sparsity for W. The l0, l1 norms are popular

choices for f(.).
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Chapter 2

Approaches to dictionary learning

2.1 Non-Negative Sparse Coding (NNSC)[3]

The problem of non-negative matrix factorization can be represented succinctly as the min-

imization of,

C(A,W) =
1

2
‖X−AW‖2F

where C(., .) is the cost function. Here, the non-negativity constraints are on A and W,

i.e. ∀ij : Aij ≥ 0,Wij ≥ 0.

The problem of non-negative sparse coding adds a specific sparsity function to this

function along with some other constraints. Sparsity is added through the addition of

f(W) =
m∑
i=1

n∑
j=1

Wij

giving us the resultant optimization function

C(A,W) =
1

2
‖X−AW‖2F + λ

∑
i,j

Wij

subject to the constraints ∀ij : Aij ≥ 0,Wij ≥ 0 and ∀i : ‖Ai‖ = 1. This is identical to the

l1 norm for each Wij as Wij ≥ 0. The hyper-parameter λ is assumed to be non-negative.

The problem boils down to minimizing this error function. Due to the lack of a closed
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form solution to the solution, an iterative approach is taken. Usually, an algorithm identical

to gradient descent is used to iteratively reduce the value of the function to a minima.

However, the authors of the paper show that under the above choice of C(., .), the

iteration can be done in a specific way which has certain good properties.

2.1.1 Non-increasing updates to W

The objective function is non-increasing under the following update rule:

Wt+1 = Wt. ∗ (ATX)./(ATAWt + λ)

where .* and ./ notations are MATLAB compatible. The addition of λ is to all the elements

of the matrix. Note that T represents the transpose of a matrix and t represents time.

2.1.2 NNSC algorithm

Algorithm 1 NNSC
1: t← 0

2: Initialize A0 to strictly positive values

3: A0← normc(A0)

4: Initialize W0 to strictly positive values

5: repeat

6: A1← At − µ(AtWt −X)(Wt)T

7: A2← max(0,A1)

8: At+1 ← normc(A2)

9: Wt+1 ←Wt. ∗ ((At+1)TX)./((At+1)T (At+1)Wt + λ)

10: t← t + 1

11: until convergence
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2.2 Non-linear Sparse Coding (NLSC)

In this section, we look at another approach to learn dictionaries. The previous approach

described dictionaries in the Euclidean space. However, an equivalent coordinate system,

the spherical coordinate system, has also been explored for such tasks. This section dis-

cusses one such approach[6] and delineates the operations done using them.

Representing points on a sphere requires special treatment. This is motivated by the

fact that the notion of distance on spheres no longer follows the one in the Euclidean space.

Distances on a sphere are calculated along the great circle joining the two points in question

and log maps come into the picture here. The corresponding operations are also modified

to account for this different metric. Manifolds are topological spaces which help us deal

with operations on spheres. From the following sections on manifolds, we will see that

the distance metrics are defined differently for each point. This task makes working with

manifolds more complex and needs to be handled carefully.

2.2.1 Manifolds

A manifold M of dimension d is a topological space such that each point x ∈ M has

a neighborhood which can be continuously transformed to a Euclidean space of the same

dimension. More formally, the neighborhood is homeomorphic to the Euclidean space, Rd.

With the additional property of being able to perform differential calculus on the manifold,

it becomes a differential manifold.

2.2.2 Riemannian manifolds

Every differential manifold has a tangent space associated with it. The tangent space, TxM

defined at x ∈ M is the vector space containing all the tangent vectors toM at the point

x. With the additional constraint of having an inner product, on the tangent space, TxM,

we get the Riemannian manifold.
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2.2.2.1 The notion of distance

Let v ∈ TxM be a tangent vector to M at x. There exists a unique smooth curve, a

geodesic,

γv : [0, 1]→M

satisfying γv(0) = x with initial tangent vector in the direction of v, γ′v(0) = v.

Suppose x and y are two points onM. The distance function d :M×M→ [0,∞) is

defined as,

d(x, y) = inf
γ
{x, y ∈ γ}

In simpler terms, the distance between them is the minimum length of all the curves that

start at x and end at y.

2.2.2.2 Exponential and the logarithm maps

We can simply add or subtract two vectors to get a third one. However, if we apply the

same notion over here, we may get a point which does not lie on the manifold. Hence, it

becomes important to define the operations of addition and subtraction carefully. There are

two important functions which do this — exp and log.

The exponential map expx : TxM→M is defined as,

expx(v) = γv(1)

This signifies that point onM which lies in the direction of v and is one unit distance away

from x. Let’s give this an informal interpretation. The constant e is defined to be the limit

limx→0(1 + x)
1
x from calculus. This can be understood as adding some small quantity to

1 and see what it is, followed by adding a small quantity to this new entity and repeating

the operating infinite number of times. The exponential map is analogous. Since directly

adding two points on a manifold may push it away from it, we add small increments to a

point several times until we have reached a point which a 1 unit away from it in a particular

direction. These small increments help ensure that we are still on the manifold and the
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operations are meaningful. The inverse of the exponential map is the logarithm map,

logx :M→ TxM

Under some assumptions of the global existence of the exp and the log maps, we get the

following two important results:

1. d(x, y) = || logx(y)||x where ||v||x is the length of the vector v ∈ TxM

2. d2(x, .) is a smooth function for all x ∈M

2.2.3 Dictionaries on spheres

The usual definition of a dictionary searches for a set A, whose linear combination gives

us the best set of points X . However, this linear combination makes no sense on a sphere.

Hence, we want to look for a generalization of Xi = AWi since our spherical manifold

does not support a global vector space structure. Riemannian manifolds help us in this

regard by providing a tangent space, TxM, at point x ∈ M (Riemannian manifold) which

allows us to extract global information using the exponential and logarithm maps.

Unlike the Euclidean case where we could exploit the vector structure we do not have

that freedom here. The notion of “origin” is not present here since the tangent space is

locally defined. The point x can be interpreted as the origin for TxM. Since we want to

model the linear reconstruction nature of dictionaries forM, we impose an affine constraint

on the coefficients. So if,

Xi = w1iA1 + w2iA2 + · · ·+ wmiAm

then by setting

w1i + w2i + · · ·+ wmi = 1

for each i gives us an origin independent environment.

[6] shows that

min
A,W

n∑
i=1

∥∥∥∥∥
m∑
j=1

Wij logxi(Aj)

∥∥∥∥∥
2

xi

+ λ ‖W‖1
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m∑
j=1

Wij = 1,∀i = 1, 2, . . . , n

is a good optimization problem for learning the dictionaries onM.

For unit spheres, on putting the appropriate log function, this boils down to,

min
A,W

n∑
i=1

∥∥∥∥∥
m∑
j=1

Wij cos−1(〈Xi,Aj〉)
uij

|uij|

∥∥∥∥∥
2

xi

+ λ ‖W‖1

uij = Aj − 〈Xi,Aj〉Xi

m∑
j=1

Wij = 1,∀i = 1, 2, . . . , n

where 〈 , 〉 is the vector dot product.

Unfortunately, there is no closed form iterative algorithm to get convergence as unlike

the previous method. We resort to our old friend, gradient descent, to reach a convergence

condition. Here, one needs to be careful because we are working under the assumption of

a unit sphere. So for the log maps to be meaningful we need to assert that ‖Aj‖2 = 1 and

‖Xi‖2 = 1. This requires the use of projected gradient descent. Furthermore, the affine

constraint also needs to be maintained. The procedure to do this can be summarized as

follows.
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2.2.4 The algorithm

Algorithm 2 Non-linear sparse coding

1: Initialize A ∈ Rd×n

2: A← normc(A)

3: Initialize W ∈ Rn×m

4: repeat

5: repeat

6: A1← A− µA∇Af(X,A,W)

7: A← normc(A1)

8: until A converges

9: repeat

10: W1←W − µW∇Wf(X,A,W)

11: W← bsxfun(@rdivide,W1,sum(W1, 2))

12: until W converges

13: until both A and W converge

In the above algorithm, columns of A represent the dictionary atoms and the rows of W

represent the coding coefficients.

2.2.5 Gradients

The gradient needs to be explicitly calculated. After a tedious calculation and optimiza-

tions, the gradients can be summed up as follows.

Let’s just focus on the first term of the optimization function. The second terms if the

l1 norm and is easy to deal with. Furthermore, it has no contribution to∇Af .

vij = Wij cos−1(〈Xi,Aj〉)
uij

|uij|

12



f(X,A,W) =
n∑
i=1

∥∥∥∥∥
m∑
j=1

vij

∥∥∥∥∥
2

Note that uij and vij are vectors in Rd. Let’s denote the kth component of any vector x as

x(k) and its transpose as xT.

Hence,

v
(k)
ij = Wij cos−1(〈Xi,Aj〉)

u
(k)
ij

|uij|
The gradient with respect to Wpq is,

∂f

∂Wpq

= 2
cos−1(〈Xp,Aq〉)

|upq|
uT

pq(
m∑
j=1

vpj)

The gradient with respect to Ast is,

∂f

∂Ast
= 2

n∑
i=1

m∑
j=1

(F5(i, j)〈uij,uit〉+ F6(i, j)u
s
ij + F7(i, j)〈Xi,vij〉)

F1(i, .) = −WitXsi

|uit|2

F2(i, .) =
Wit cos−1(〈Xi,At)

|uit|

F3(i, .) = −Wit cos−1(〈Xi,At)

|uit|
Xsi

F4(i, .) =
Wit cos−1(〈Xi,At)

|uit|3
Xsi〈Xi,At〉

L(i, j) =
Wij cos−1(〈Xi,Aj)

|uij|
F5 = (F1 + F4). ∗ L

F6 = F2. ∗ L

F7 = F3. ∗ L

13



2.2.6 Some implementation details

The gradient computations, as can be seen, are extremely complicated operations. A lot of

optimizations were done to make them memory as well as time efficient. In conjunction

with this, two factors can be considered to speed up the convergence of the algorithm.

1. The initialization, if far away from the optimum, can take a long time to converge.

This project used K-means for this.

2. The rate parameters µA and µW determine the speed at which the algorithm con-

verges. We use adaptive gradient descent to tweak the step-size at each step of con-

vergence.

3. The RMSProp optimizer also builds on the idea of adaptive gradient descent but

chooses the learning rate dynamically based on the data. The convergence is faster

and can often avoid local minimas.

For the purpose of these experiments, an adaptive variant of RMSProp was used where

the learning rate was both adaptively chosen from (2) and the one in the RMSProp algo-

rithm.
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Chapter 3

Application of dictionaries for MNIST

classification

Dictionaries can be used well for classification tasks as well. The coefficient vector is a

compressed representation for the image with respect to the dictionary matrix. This ex-

periment was done using the non-negative sparse coding algorithm described in section

2.1.

3.1 Experiment

We conducted the experiments using the above mentioned coding approach on the MNIST

dataset of handwritten digits. This data set contains 28 x 28 images the digits 0 to 9 written

by people in different styles. There are 60,000 images for testing and 10,000 for testing.

For the purpose of this experiment, the images were resized to 14 x 14 and the random

forest classifier with 100 trees was used.

The approach taken is as follows:

1. We consider images of one class at a time, label ∈ 0, 1, . . . , 9. Label the set of

images Xlabel

15



2. Set the dictionary of atoms to be learned for each class, say Alabel

3. Use NNMF to learn the dictionary Alabel along with sparsity regularization. The

hyper-parameter λ dictates this. Too high a sparsity, will lead to fewer atoms being

used to determine the image reconstruction, and vice-versa

4. Now that we have the learned atoms {A0,A1, . . .A9}

5. Following this we combine all the atoms and the data points together, i.e., set

A = [A0A1 . . .A9]

X = [X0X1 . . .X9]

6. Using these A, we fit X to it, i.e., we keep A constant and find the W which mini-

mizes the cost function. In other words, we sparse code the data. Refer to Algorithm

2 for a detailed description. This step gives us the coefficients that define the recon-

Algorithm 3 Sparse coding the learned dictionary
1: t← 0

2: Initialize W0 to strictly positive values

3: repeat

4: Wt+1 ←Wt. ∗ (ATX)./(ATAWt + λ)

5: t← t + 1

6: until convergence

struction of images from the atoms. Note that it is possible that an image of, say class

7, may have components from different classes. The algorithm does nothing to make

this distinction. However, we would expect that the atoms corresponding to class 7

will have a major contribution to the data points from class 7. Our project is trying

to validate the same hypothesis, and as it turns out, it does it really well.
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7. Now, we fit a random forest classifier with 100 trees. The input to the classifier are

the sparse coded coefficients and the labels are their corresponding classes.

8. The validation of the model is done in a similar manner. The testing data is sparse

coded using the dictionary matrix, A, and the corresponding sparse coefficient vec-

tors are fed to the trained classifier. The classifier tells us which class the coefficient

vector should belong to.

3.2 Results

The average classification accuracy was 94.610000% for the 10,000 testing samples. The

class-wise breakdown is as follows: In this model, 10 atoms were used for each class. The

Digit Accuracy(%)

0 98.36

1 98.85

2 96.31

3 94.65

4 95.11

5 92.15

6 97.07

7 94.55

8 87.16

9 90.98

Table 3.1: Accuracy for each digit

coefficient λ was set to 0.
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Chapter 4

Application of dictionaries on image

patches for image denoising

Dictionary learning has been applied to a good degree for images. Let us first understand

how do we represent images as vectors to use the previously developed formalism. To do

this, we introduce the notion of a patch within an image. A patch is a rectangular sub-

region in an image which essentially is a part of the image. We take a patch and vectorize

it to convert it into a vector which can be used in the algorithm.

The interesting question is what does a dictionary for an image mean? Images have a lot

of interesting features in them — edges, texture, etc. — and we want to be able to represent

them using atoms. If we are able to identify these building blocks of an image, we can use

their affine combinations to reconstruct image patches. If we consider overlapping patches

in our image, then a single pixel is a part of multiple patches. We can find the intensity of

that pixel by an average over all the patches in which the pixel lies. If the original image

contains noise, then the averaging will reduce the noise and bring us closer to the actual

image. Note that this method of taking affine combinations is not exact as we are working

on spheres but it works reasonably well.

One subtle point to note is not all patches help learn the dictionary well. A patch which

is of constant intensity does not provide interesting insights into the structural components
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of the image and hence we can safely ignore it. Building on this, only those patches which

have a high amount of variance should be considered for the training process. For the

reconstruction phase, we add a constant intensity patch to the learned dictionary and try to

find the coefficients whose affine combination will construct the image with the minimum

error.

One must remember that patches have a lot of variations among themselves. One patch

may be brighter while other may be dull. Some patches may have different range of inten-

sities. Therefore, we want to get rid of these and give a uniform nature to all the patches.

4.1 Reconstruction algorithm

These algorithms are based on the non-linear sparse coding method described in section

2.2.

Algorithm 4 Learning the dictionary
1: Find all high variance patches within the image using a threshold

2: Vectorize all the high variance patches to get the matrix X ∈ Rd×n

3: X← normc(X)

4: Initialize A ∈ Rd×n using K-means

5: A← normc(A)

6: Initialize W ∈ Rn×m using K-means

7: repeat

8: Converge A keeping W fixed

9: Converge W keeping A fixed

10: until both A and W converge
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Algorithm 5 Reconstructing the image back

1: Vectorize all the patches to form the matrix X ∈ Rd×n

2: N← repmat([‖X1‖ , ‖X2‖ , . . . , ‖Xn‖], d, 1)

3: X← normc(X)

4: Get the dictionary matrix A ∈ Rd×n from Algorithm 4

5: A(1) ← [A,P] where P ∈ Rd is the unit norm constant intensity patch

6: Initialize W(1) ∈ Rn×m using KNN search from the dictionary A(1)

7: Fit A(1) to X to get the new coefficient matrix W(1)

8: X(2) ← (A(1)W(1)). ∗N

9: Reshape columns of X(2) into patches and find average intensity of pixel

4.2 Experiments and results

The experiment was done with the standard Lena test image of size 256 × 256 using the

second algorithm. 9 × 9 sized high variance patches were considered for the experiments.

50 atoms were considered for the experiment.

(a) Lena reconstructed after k-means (b) Lena reconstructed after iteration

Figure 4.1: Comparison of reconstruction before and after convergence

20



The denoised image appears more blurred compared to the corresponding image on

the left because of possibly two reasons - (1) presence of noise and (2) lesser number of

training points used for the second case to save on computational resources. The gradient

computation for matrix A takes a lot of time and that is the major bottleneck of the al-

gorithm and increasing the number of training points proportionally blows up the training

time both for learning and fitting the atoms.

Figure 4.2: 50 atoms for the Lena image

These 50 atoms were learned by the algorithm. The different segments within the image

are the various atoms. One can see that the atoms are different and each atom captures the

intricate and edge-like features from the image. Since we are not allowing reflections, so

different orientations of edges are counted separately. Also edges occurring at different
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place, although, in the same orientations account as different atoms.

The algorithm also does better than the basic k-means initialization as can be seen in

figure 4.1.
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# of training points: ∼33K

# of atoms: 50

# of training points: ∼12K

# of atoms: 50

Noise: sigma 5% of intensity range

Original image

Reconstructed im-

age

Objective func-

tion for learning

the dictionary

Objective func-

tion for fitting

the patches to the

dictionary
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Chapter 5

Dictionary for shapes

This section refers to method developed in [1] [4] and [2]. Shapes play an important role

in medical image processing. Most body parts have a fixed shape and structure. Defects

and diseases can often be identified by analysis of the structural changes in them. This

motivates one string factor for the study of shape analysis.

Dealing with shapes requires a different way to represent them. A shape is a continuous

curve and we choose some k points on it to get a discrete sampling. If the shape is in a

d dimensional space, then we essentially get k × d dimensional shape space. Since we

are working with images, d = 2 or d = 3. This part of the thesis deals with image

for which d = 2 or 2D images. Let’s denote a shape, S using some sampled points as

S =

x(1)1

x
(2)
1

 ,

x(1)2

x
(2)
2

 . . .

x(1)k
x
(2)
k

. Note that these are all points on the same curve and

not points on different curves.

To apply the previously developed formalism, we convert these set of points to a vector

by concatenating the vectors. The vector representing this curve takes the form

Xi = [x
(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 , . . . , x

(1)
k , x

(2)
k ]T

.

One issue resolved, there are more. The difficulty in coming up with a general notion

of shape is difficult because of 4 factors:
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1. Translation: Moving the image does not alter its shape

2. Scaling: Changing the scale by the same factor along all the axes also maintains the

shape

3. Rotation: By changing the orientation of the image, the shape remains unaltered

4. Reflection: Reflection about a place or axis also keeps the shape same. We won’t be

dealing with reflections as part of this thesis

Hence, before moving on to analyzing shapes and their similarities, we need to remove

the first three factors mentioned above. If this were not so then the notion of distance

between two shapes won’t be meaningful. We need to get them to a common coordinate

frame and that is done step by step as follows:

1. Translation: To get away with this, we shift the centroid of the shape to the origin.

This gives us a consistent notion of placement of a shape in the coordinate axis — at

the origin. The centroid, µ of a shape S is

µ =
1

k

k∑
i=1

x(1)i
x
(2)
i


To remove translation, x̄i = xi − µ. This is then further converted to the combined

vector representation X̄i.

2. Scaling: We set the variance of X̄i to 1 by dividing it by its norm to consistently get

a unit norm shape

3. Rotation: As discussed above, we get the same shape on rotation. So if we have

two shapes, S1 and S2, the distance between them would have been defined between

them as,

d(S1,S2) = ‖S1 − S2‖2F

This is essentially measuring how far away the component points of the shapes are far

away from each other. However, note that the we can possibly find a smaller distance
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between them by rotating the shapes and aligning them to each other using some

distance metric. This idea is captured by what is called the Procrustes distance. We

find an orthogonal rotation matrix which finds the nearest shape for a given shape, Ω

such that

Ωopt = arg min
Ω∈Rd×d

‖ΩS1 − S2‖F

ΩTΩ = I, det(Ω) = 1

This finds the “nearest” shape in the squared error sense. We will use this to align one

shape with other. This above problem has a closed form solution given by Ωopt =

UVT where U and V are the left and right singular matrices of M = S2ST
1 . If

det(Ωopt) = −1 then we flip the sign of one of the left singular values. MATLAB

does this internally through the function procrustes().

Having addressed these issues, we are now ready to develop the methodology for learn-

ing shapes using spheres. The algorithm needs to be modified at three places to accommo-

date shapes. First, while computing the value of the optimization function, f(X,A,W),

we need to align each Aj with each Xi so that the log map operates on the closest shape.

Secondly, while computing ∇Aj
f , we need to align each Xi with Aj. This ensures that all

the data are aligned with the atom and the log map gives us a consistent notion of distance.

If this were not done, then the distance might be with respect to distance projections. Fi-

nally, while computing ∇Wi
f , we align each Aj with Xi. Similar to above, this is also

done to get a uniform distance metric.

5.1 Algorithm for shapes

The overall algorithm is a costly one. This can be attributed to that fact the operations

involve aligning one shape with another. The alignment requires computing the SVD of a

particular matrix which has been described in the previous section and it adds to the com-

putational time. This algorithm is based on the non-linear sparse coding method described

in section 2.2.
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Algorithm 6
1: Input: shapes S1,S2, . . .Sn each defined by k points

2: Preprocess the shapes to remove translation and scale factor

3: Vectorize the processed shapes as described earlier to form the matrix X ∈ Rdk×n

4: Initialize A ∈ Rdk×n using K-means

5: A← normc(A)

6: Initialize W ∈ Rn×m using K-means

7: repeat

8: repeatfor each Aj

9: Align each Xi with Aj using the Procrustes distance metric to get X̄

10: A1j ← Aj − µA∇Aj
f(X̄,Aj,W)

11: Aj ← normc(A1j)

12: until Aj converges

13: repeatfor each row vector Wi

14: Align each Aj with Xi using the Procrustes distance metric to get Ā

15: W1i ←Wi − µW∇Wi
f(X, Ā,Wi)

16: Wi ← bsxfun(@rdivide,W1i,sum(W1i, 2))

17: until Wi converges

18: until both A and W converge

5.2 Experiments and results

The aim of the experiments for this section is to find a sparse dictionary that can represent

all the images well enough that we have in our dataset. The experiment for this section

were performed in 2 stages in varying order of complexities.

5.2.1 Ellipses

This experiment was conducted using a very simple manually constructed dataset. We

used a set of ellipses with their axes aligned along the x and y-directions. The major axis
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was along the x-direction, with the semi-major axis length = 0.5 and the semi-minor axis

length varied from 0.1 to 0.4 with step size of 0.01 units giving us 31 ellipses to learn the

model from. Each ellipse had 36 points describing its shape. The points were separated

by 10 degree angles. The algorithm does excellent for this simple model. Figure 5.2

shows the reconstructed as well the original ellipses, just that the original set of ellipses

has been masked by the reconstructed ellipses almost exactly. The RMS error over all the

ellipses was just 0.082037 which explains the close similarity. The figure 5.1 shows the

two atoms used to reconstruct the ellipses of figure 5.2. Figure 5.3 shows how a particular

ellipse is constructed by taking the linear combination of the two atoms. The linear addition

is done by first aligning each atoms with the data points and then reconstructing it.

Figure 5.1: Two atoms used to construct the ellipses

5.2.2 Leaf images

This experiment was done on the leaf dataset collected by Sougata Singha. This dataset has

images of several leaves of different tree species. The boundary points have been computed

for each leaf which help analyze the shapes of the leaves. Each leaf has been marked with

100 points along its boundary with a good amount of correctness. We learn shapes using

these points for this leaf dataset. The experiments below are in two parts. The first section
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Figure 5.2: Reconstructed ellipses using 2 atoms

Figure 5.3: Reconstruction of ellipse using its atoms

does shape analysis for just one leaf type from the tree Anhui barberry and the second

experiment analyses the joint model for Anhui barberry and Trident maple.
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5.2.2.1 Anhui barberry

The dictionary was learned using 5 atoms. The results have been depicted in figure 5.5.

The leaf atoms shown in figure 5.4 capture the different shapes of leaves as are there in the

dataset. The average reconstruction RMS error was 0.18. We observe that the average

reconstruction accuracies do not vary much as the number of atoms are varied in the dataset.

Even with 2 atoms, the error is 0.1836 which matches that for m = 5 atoms. With 10

atoms, the error is 0.1491. Smaller number of atoms suffice here because the shape

structures are similar as the leaves are from the same tree. With more number of leaf types

to learn, we incrementally need more atoms as is shown in the next section.

Figure 5.4: Atoms used to construct the leaves

5.2.2.2 Trident maple

In this case, there was more variation when the number of atoms were varied. For m

= 5 atoms, the average reconstruction error was 0.32 and with m = 10, the error was

0.24. The atoms in this are more varied and capture more orientations compared to the

previous leaf. This is because this leaf has a more directed and varying structure and smaller

number of atoms are not able to capture all of them changes. Figures 5.6 and 5.7 are the

corresponding images for this leaf.

5.2.2.3 Joint learning of shapes

A model was learned on the combined leaf shapes of the two trees mentioned above. The

number of atoms were set of 10 and the reconstruction error was 0.24.

30



Figure 5.5: Reconstructed leaves using 5 atoms

We would want the weights to be higher for the atoms which are closer to the shape than

other atoms. This is what the algorithms does as well. Table 5.1 lists down the weights for

the 10 atoms from figure 5.10 which help reconstruct this leaf back. The weights are higher

for the atoms which are similar to this leaf. We see the highest weight for the first atom

which most closely resembles this leaf. Smaller weights are those which correspond to the

atoms from the tree trident maple.
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Figure 5.6: Atoms used to construct the leaves

1.2992 -0.1307 0.0868 -0.0298 -0.0370 -0.0426 0.0504 0.0125 -0.0869 -0.1220

Table 5.1: Weights for the 10 atoms for leaf in 5.10

The algorithm adapts to the dictionary and it can be used with good affect for shape

analysis. Though the approach is computationally more expensive because of operations

on a hypersphere which take up time for normalization operations, the results are promising

and can be extended to general real life cases such as medical image analysis.
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Figure 5.7: Reconstructed leaves using 10 atoms
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Figure 5.8: Atoms used to construct the leaves
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Figure 5.9: Reconstructed leaves using 10 atoms

Figure 5.10: A leaf from Anhui barberry reconstructed from the mixed dictionary
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Chapter 6

Conclusion

This work revolves around the use of dictionaries for various tasks in image processing.

The paper talks about the meaning of dictionaries and discusses two ways of finding them.

The first approach, based on non-negative matrix factorization has been used for image

classification and the second version based on Riemannian manifolds has been applied to

the task of denoising and shape analysis. The first approach works well for image classi-

fication achieving accuracies of around 94%. The denoising and shape analysis parts are

also quite good. For the denoising task, the algorithm is able to learn the unique features

from the image. The algorithm for shape analysis generalizes well for different shapes and

learns weights based on the closeness with the atoms in the dictionary. This seems promis-

ing avenue of search and more work needs to be done before they can have full fledged

applications, as discussed in the next section.
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Chapter 7

Future Work

The main application of shape analysis lies in medical image processing. Medical images

often are faced with the issue of occlusion. For instance, if an image has number of cells

in it, then it is very likely that they won’t be having disjoint boundaries and there would

be a decent amount of overlap. To alleviate this problem, we would like to learn models

which can help detect their outer boundary. We can ascertain that we have a cell in a section

of the image if our algorithm is able to match it with a certain degree of accuracy. This is

precisely what shape analysis gives us — a template for matching shapes present in images.

Therefore, the future part of this project will be to learn shapes for more general types of

structures and provide efficient segmentation for such images.
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