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Abstract

In this paper, we explore various practical extensions of the Iterative Teaching
Model proposed by Liu et al. [1]. Instead of considering an omniscient teacher,
we impose the restriction on the teacher that she doesn’t know the learning rate (η)
precisely but only knows the interval that η ∈ [L,U ] . In real life, it corresponds to
the situation where the student may learn at different rate on different days. If the
teacher is able to achieve exponential convergence in this setting, we call it robustly
exponentially teachable. We devise strategies for teaching in such situations as
well as analyze them.

1 Warmup: Iterative Teaching Framework

We here briefly describe the Iterative Teaching Framework and review the already known results for
this framework. We refer the interested reader to the original paper by Liu et al. [1] for further details.

At each iteration t, teacher chooses an example (xt, yt) to be given to the student. Given an example
(xt, yt), the students uses gradient descent (with the loss function ˜̀(w, x, y)) to update her current
parameter vector wt, i.e,

wt = wt−1 − η ·
∂ ˜̀(w, x, y)

∂w

The student is specified by three parameters: (w0, η, l̃(·, ·, ·)). The goal for the teacher is to find a
short sequence of examples {(xt, yt)}Tt=1, i.e., minimize T , as well as ensure parameter convergence,
i.e., ‖wT − w∗‖ is small. We restrict our attention here to linear class of models, where ˜̀(w, x, y) =
`(〈w, x〉, y). Some examples of such losses are (1) linear regression: `sq(〈w, x〉, y) = 1/2(〈w, x〉 −
y)2 , (2) hinge loss: `hi(〈w, x〉, y) = max(0, 1− y〈w, x〉).
The Teaching rule proposed by Liu et al. [1] is to choose an example that satisfies the following
condition

(xt, yt) = argmin
x,y

η2T1(w, x)− 2ηT2(w, x) (1)

where T1(w, x, y) =
∥∥∥∂ ˜̀(w,x,y)∂w

∥∥∥2 and T2(w, x) =
〈
wt − w∗, ∂

˜̀(w,x,y)
∂w

〉
. This rule is motivated by

the following observation:

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 + η2

∥∥∥∥∥∂ ˜̀(w, x, y)∂w

∥∥∥∥∥
2

− 2η

〈
wt − w∗,

∂ ˜̀(w, x, y)

∂w

〉
(2)

As we want the term on the left hand side to be small, we should pick the example that minimizes the
right hand side.

Theorem 4 of [1] states that if the loss function and learning rate are nice enough, then it is possible
to show exponential convergence.
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Theorem 1 (Theorem 4, [1]). For a student with fixed learning rate η 6= 0, if the loss function
satisfies that for any w ∈ Rd, there exists γ 6= 0, γ ≤ R

w−w∗
, such that while x̂ = γ(w − w∗) and

ŷ ∈ Y , we have

0 < γ∇〈w,x̂〉`(〈w, x̂〉, ŷ) ≤
1

η
(3)

then the student can learn an ε-approximation of w∗ with O(Cγ,η1 log( 1ε )) samples where Cγ,η1 =

(− log(1− ην(γ))−1 and ν(γ) = minw,y γ∇〈w,x̂〉`(〈w, x̂〉, ŷ) > 0.

Absolute loss, hinge loss are exponentially teachable by this definition [1]. Note that for the squared-
loss, ν(γ) = 0 leading to vacuous bounds by Theorem 1. However, it is still exponentially teachable,
see Section 2.2.

1.1 Perceptrons with lipschitz activations are exponentially machine teachable

If we have a perceptron model with y = σ(wTx) where σ(·) is a Lipschitz activation function,
then by the Theorem 1, if the following condition is satisfied then, then it is exponentially machine
teachable:

0 < γ∇σ(〈w,x̂〉)`(σ(〈w, x̂〉), ŷ) ≤
1

ηL
(4)

1.2 Extension: Unknown (fixed) η and Omniscient Teacher

Consider a setting where the teacher doesn’t know the (fixed) learning rate but can observe the
parameter wt of the student for every t. This setting might seem artificial but it is an extra layer of
uncertainty for the teacher.

Since the updates are gradient-based and teacher knows wt for every t, then teacher can calculate ηt
after observing the updated parameter wt+1.

wt+1 = wt − ηt
∂`(wt, xt)

∂wt

=⇒ ηt =
(wt − wt−1)
∂`(wt,xt)
∂wt

element-wise division should return same η (5)

Therefore, if η is fixed, then we can calculate η exactly with just one update. With η known, we have
now converted this problem to the previous problem. Hence, the iterative teaching dimension of this
problem is at-most 1 more than the omniscient teacher case of Liu et al. [1].

Note that, we assumed that the example (x, y) was chosen such that gradient of the loss function was
non-zero. We can always find such an example (x, y) unless w0 6= w∗.

2 Robustly Exponential machine Teachable

In this section, we consider the scenario that the learning rate ηt is unknown and changes at every
iteration. Moreover, no distribution is assumed on ηt. We would still like to achieve exponential
teaching in this setting where the teacher knows wt but not the learning rate ηt. We can’t follow the
strategy used in Sec. 1.2 because the learning rate ηt changes at every iteration. However, we restrict
the learning rate to be bounded in the region [L,U ] (known to the teacher) where L ≥ 0.

Robustly Exponentially teachable: We say a strategy for a loss function is robustly exponentially
teachable when only O(log( 1ε )) samples are required for ‖wt − w∗‖ ≤ ε accuracy, even in the worst
case choice of ηt ∈ [L,U ] at each step. That is, ‖wt − w∗‖ ≤ ε, for any choice of (η1, η2, . . . , ηt) ∈
[L,U ]t where wt+1 = wt − ηt∇wt

˜̀(wt, xt, yt).

Robust Teaching Rule: We consider the following teaching rule:

x∗t = argmin
x

max
η∈[L,U ]

η2T1(δt, x)− 2ηT (δt, x) (6)
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The rest of the report is focused on showing that if the loss function is exponentially teachable with
the teaching rule (Eq. 1), then it is robustly exponentially teachable with robust teaching rule (Eq. 6).

2.1 Special case: Squared loss and single η

We begin by analyzing the simpler problem of squared loss where we know the true learning rate
η. This would correspond to the setting where η ∈ [L,U ] and L = U . We show that the iterative
teaching dimension is exactly 1 in this case. This analysis provides us with insights which we use in
the case of noisy η.

Lemma 2. The Iterative teaching dimension for Squared-Loss is 1.

Proof. For the square loss, ˜̀(w, x, y) = 1
2 (w

Tx − y)2. For the realizable setting, y = wT∗ x.
Throughout this proof, t = 0.

wt+1 = wt − η∇w
(
1

2
(wTt x− wT∗ x)2

)
= wt − η((wt − w∗)Tx)x

‖wt+1 − w∗‖2 = ‖wt − w∗η((wt − w∗)Tx)x‖2

= ‖wt − w∗‖2 + η2((wt − w∗)Tx)2‖x‖2 − 2η(wt − w∗)T ((wt − w∗)Tx)x
‖δt+1‖2 = ‖δt‖2 + η2(δTt x)

2‖x‖2 − 2η(δTt x)
2

where δt = wt − w∗. If we take x = 1√
η‖δt‖δt, then δTt x = 1√

η‖δt‖

‖δt+1‖2 = δ2t + η2
(

1
√
η
‖δt‖

)2(
1
√
η

)2

− 2η(
1
√
η
‖δt‖)2

= δ2t + δ2t − 2δ2t = 0

Therefore, the iterative teaching dimension is 1 for any ε ≥ 0. This analysis suggests that the best
example xt is of the form x = cδt for some scalar c depending on the learning rate η.

2.2 Square Loss is robustly exponentially teachable

We now generalize the above case in the setting where η could vary from η ∈ [L,U ]. This could
corresponding to teaching a student whose learning rate is dynamic and unknown to the teacher.
Teacher would still like to teach her student with the exponential convergence to the true w∗.

Lemma 3. The square loss is robustly exponentially machine teachable for η ∈ [L,U ].

Proof. According to the teaching rule that we consider,

x∗t = argmin
x

max
η∈[L,U ]

η2T1(δt, x)− 2ηT (δt, x) (7)

= argmin
x

max
η∈[L,U ]

η2(δTt x)
2‖x‖2 − 2η(δTt x)

2 (8)
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Therefore,

η2T1(δt, x
∗
t )− 2ηT (δt, x

∗
t ) = min

x
max
η∈[L,U ]

η2(δTt x)
2‖x‖2 − 2η(δTt x)

2

≤ max
η∈[L,U ]

η2(δTt x̃)
2‖x̃‖2 − 2η(δTt x̃)

2 take x̃ =
γ

‖δt‖
δt

= max
η∈[L,U ]

η2(γ‖δt‖)2γ2 − 2η(γ‖δt‖)2

= max
η∈[L,U ]

ηγ2‖δt‖2
(
ηγ2 − 2

)
= γ2‖δt‖2 max

η∈{L,U}
η
(
ηγ2 − 2

)
convex in η

= γ2‖δt‖2 max
(
L(Lγ2 − 2), U(Uγ2 − 2)

)
=

2

L+ U
‖δt‖2 max

(
2L2

L+ U
− 2L,

2U2

L+ U
− 2U

)
=

2

L+ U
‖δt‖2 max

(
−2UL
(U + L)

,
−2UL
(U + L)

)
= − 4UL

(L+ U)2
‖δt‖2

For the case of square loss and the above rule, it becomes

‖δt+1‖2 = ‖δt‖2 + η2(δTt x
∗
t )

2‖x∗t ‖2 − 2η(δTt x
∗
t )

2

≤ ‖δt‖2 −
4UL

(L+ U)2
‖δt‖2

=

(
1− 4UL

(L+ U)2

)
‖δt‖2

=

(
U − L
U + L

)2

‖δt‖2

Therefore, exponential convergence for any learning rate η ∈ [L,U ]. We also recover that the iterative
teaching dimension for squared loss is 1 by setting L = U .

2.3 Robust Exponential Teaching for general loss functions

Theorem 4. If the problem with a given loss l is exponentially teachable with learning rate η = U ,
then it is also robustly exponentially teachable for ∀ η ≤ U with O(C2 log(

1
ε )) samples.

Proof. Based on the discussion in the previous section, it’s easy to extend the idea to a more general
loss function. Assume we have a loss ˜̀ = `(wTx, y), then ∇w`(〈w, x〉 , y) = `′x where `′ is the
derivative of the loss with respect to the first argument.

We follow the approach taken in the previous section and set x̃ = γδt and since we require that y
be consistent with the target concept, w∗. This gives us that `′ = `′(wT x̃, wT∗ x̃) and since x̃ is a
function of γ, let’s call ψ(w,w∗, γ) = `′(γwT δ, γwT∗ δ). In the following derivation, w,w∗ remain
fixed so for brevity, let’s call ψ(w,w∗, γ) simply ψ(γ).

With this idea in mind, we wish to choose our x which solves the following program and correspond-
ingly γ according to the rule,

min
x

max
η∈[L,U ]

‖δt‖2 + η2T1(δt, x)− 2ηT (δt, x)

≤ min
γ

max
η∈[L,U ]

‖δt‖2 + η2‖ψ(γ)γδt‖2 − 2η 〈δt, ψ(γ)γδt〉 set x = γδt

= min
γ

max
η∈[L,U ]

‖δt‖2 + η2γ2ψ(γ)2‖δt‖2 − 2ηγψ(γ)‖δt‖2
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= min
γ

max
η∈[L,U ]

(1− ηγψ(γ))2 ‖δt‖2 (9)

We note that this objective is a quadratic as a function of η and hence the maximum occurs at the
endpoints of [L,U ]. With this, the inner maximization problem simplifies to

max
(
(1− Lγψ(γ))2 ‖δt‖2, (1− Uγψ(γ))2 ‖δt‖2

)
. (10)

To analyse this, let’s define,
ν(γ) = min

w,w∗
γψ(w,w∗, γ) (11)

Also, since the loss function is exponentially teachable with learning rate η = U , it satisfies the
following property,

∃ γ such that 0 < γψ(w,w∗, γ) ≤
1

U
∀ w,w∗. (12)

With these, we get

• ν(γ) > 0

• ν(γ) ≤ γψ(γ) ≤ 1
U

This directly implies,

0 < ν(γ) ≤ γψ(γ) ≤ 1

U

=⇒ 0 < Lν(γ) ≤ Lγψ(γ) ≤ L

U

=⇒ 1 > 1− Lν(γ) ≥ 1− Lγψ(γ) ≥ 1− L

U
> 0

and

0 < ν(γ) ≤ γψ(γ) ≤ 1

U
=⇒ 0 < Uν(γ) ≤ Uγψ(γ) ≤ 1

=⇒ 1 > 1− Uν(γ) ≥ 1− Uγψ(γ) ≥ 0

With this,

max
(
(1− Lγψ(γ))2 , (1− Uγψ(γ))2

)
≤ max

(
(1− Lν(γ))2, (1− Uν(γ))2

)
= (1− Lν(γ))2

because ν(γ) > 0 and hence 0 < 1− Uν(γ) < 1− Lν(γ) < 1. This establishes,

‖δt+1‖2 ≤ (1− Lν(γ))2 ‖δt‖2 (13)

and we get exponential convergence. This recursion can be simplified further to get the constants.
Below we show that this analysis works for the l1 loss.

2.3.1 Example: `1 loss

We can verify that the above property holds for the `1 loss as well. Note that `1(α, β) = |α− β|.

`′1 =
∂l1(α, β)

∂α
= sgn(α− β)

Therefore,

ψ(γ) = sgn (〈w, γδ〉 − 〈w∗, γδ〉)
= sgn

(
γ‖δ‖2

)
= sgn(γ)
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Hence we want,

γψ(γ) ≤ 1

U

=⇒ γ · sgn(γ) ≤ 1

U

=⇒ |γ| ≤ 1

U

and by choosing some arbitrarily small γ, we can conclude that the l1 loss guarantees exponential
teachability. Also, ν(γ) = γψ(γ) = |γ| and we can reduce the error ‖wt − w∗‖ to ε in O(log 1

ε )
number of steps.

2.4 Alternate analysis for l2 loss

An observant reader might note that ν(γ) = 0 for the squared loss and hence, we don’t get exponential
convergence (we require ν(γ) to be strictly more than 0). We provide an alternate condition (satisfied
by square loss) that also ensures exponential convergence.
Theorem 5. If the loss function satisfies Eq. 14 for every w,w∗ for an interval of η ∈ [L,U ] for
some γ = γ∗, then it is also robustly exponentially teachable.

Proof. The key equation of interest in the analysis is equation 10. We equate the two terms, and try
to find a specific value of γ which makes them equal ( with the intention of making both of them
small at the same time using a symmetry argument),

(1− Lγψ(γ))2 ‖δt‖2 = (1− Uγψ(γ))2 ‖δt‖2

=⇒ L2γ2ψ(γ)2 − 2Lγψ(γ) = U2γ2ψ(γ)2 − 2Uγψ(γ)

=⇒ L2γψ(γ)− 2L = U2γψ(γ)− 2U

=⇒
(
L2 − U2

)
γψ(γ) = 2 (L− U)

=⇒ γψ(γ) =
2

L+ U
(14)

Let γ∗ be the solution to the above equation. For convergence, we want the multiplicative scalar in
equation 9 < 1. This imposes the condition that γ∗ should satisfy,

η2γ∗2ψ(γ∗)2 − 2ηγ∗ψ(γ∗) < 0.

where η ∈ {L,U}. Plugging in γ∗ from equation 14, we have,

η2γ∗2ψ(γ∗)2 − 2ηγ∗ψ(γ∗) = η2
(

2

L+ U

)2

− 2η

(
2

L+ U

)
= η

(
2

L+ U

)(
2η

L+ U
− 2

)
=

(
4η

L+ U

)(
η − L− U
L+ U

)
< 0.

Hence, the solution to equation 14 gives us a contractive γ∗. Plugging in the value for γ∗ψ(γ∗) into
equation 9, we get the value,

‖δt+1‖2 ≤
(
1− L 2

L+ U

)2

‖δt‖2

=

(
U − L
U + L

)2

‖δt‖2

which gives us exponential convergence for any η ∈ [L,U ] and is considerably tighter than the one
obtained in the section 2.3.

Thus, we conclude that as long as one can find a solution to equation 14, this approach will guarantee
exponential teachability.
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2.4.1 l1, l2 losses

It is easy to verify that this property holds for the l1 loss. See section 2.2 for a proof of l2 loss. This
is easily extendable for lpp losses in the same vein.

3 Conclusion and Future Work

We built upon the ideas of Liu et al. [1] in the context of iterative machine teaching. In this report,
we showed that a slight modification of the teaching rule proposed by the authors of the paper can
be generalized to perceptrons with lipschitz activations, thus making them exponentially teachable.
More importantly, we also looked at the setting where the learning rate is not fixed a priori but
bounded. We were able to prove that this setting is robustly exponentially machine teachable, and
hence generalized the findings of [1]. This immediately implied that our ideas are robust to the choice
of learning rate η. One are of extension would be to teach a collection of students in a ‘classroom’
each with her own different (but bounded) learning rate with the same set of examples. We believe
that a slightly modified teaching rule could be used to achieve this for smooth loss functions like
squared loss.
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