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Abstract

While Deep Neural Networks are powerful learning models that have widespread
usage in pattern recognition applications, they are susceptible to adversarial
examples—small, often imperceptible perturbations to images—that can cause
a modern-day classifier to misclassify with a high probability. In this project,
we investigate various methods to perform adversarial attacks on the most robust
defense algorithm as per our knowledge: the Robust Manifold Defense. Our attack
methods include approaches such as the Fast Gradient Sign Method (FGSM), It-
erative FGSM (I-FGSM), Single-Pixel Attacks, Max-Min based approach and an
algorithm that exploits the geometry of a Variational Autoencoder. Although we
were not able to break the defense completely, we were able to force the algorithm
to misclassify on MNIST digits 36% of the time using I-FGSM with ε = 0.2.
Furthermore, our FGSM attack achieved an improvement of at least 8 to 10%
in misclassification as compared to the approach taken in the Robust Manifold
Defense paper.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated excellent performance and proven to be powerful
learning models that achieve state-of-the-art pattern recognition performance in areas such as Com-
puter Vision, Speech Recognition and other domains such as drug discovery and genomics. However,
due to imperfections during the training phase, DNNs are highly vulnerable to adversarial examples.
Recent research [6] has revealed that the outputs of a DNN can easily be altered by adding some
small, often imperceptible perturbations of the input data and lead to misclassifications in modern-day
classifiers with high probability. Existence of these perturbations are especially problematic when
these classifiers are deployed in the real world, such as in self-driving cars. One reason why defending
against these adversarial attacks can be hard is because the natural image is perturbed into some
space which is far from the manifold of natural images. Since classifiers aren’t trained on images far
from the natural images, it does not learn the representation of adversarial examples.

There have been several attempts to make DNNs robust to these adversarial attacks. However,
defending against a wide range of attacks remains a challenge. After surveying the literature, the
common techniques used to defend against adversarial attacks are through the use of gradient
masking techniques. Athayle et al. [1] proposed techniques to overcome these obfuscated gradients
and successfully attacked these defenses.

This motivated Ilyas et al. [3] to implement the Robust Manifold Defense, which is the most robust
defense algorithm against gradient based attacks as per our knowledge. Their claims of being
completely robust to gradient-based attacks motivated us to find several means to undo their defenses.
These include other gradient-based attacks not assessed in their work such as the Iterative Fast
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Gradient Sign Method (I-FGSM), a game-theoretic approach that formulates a max-min optimization
problem, and brute force single-pixel and N-pixel attacks.

2 Background and Literature Review

2.1 Fast gradient sign methods

The Fast Gradient Sign Method is a simple and quick gradient-based method to generate adversarial
images, as described in the work by Goodfellow et al [2]. The method linearizes the cost function
and solves for the perturbation that maximizes this cost subject to an l∞ constraint. The equation to
generate adversarial examples is:

xadv = x+ ε · sign (∇x`(x, y, θ)) (1)

where ε is a hyper-parameter that determines the maximum perturbation to be applied to the original
image. ` stands for the loss function defined in terms of the input x, the true label y and the parameters
of the classifier, θ. In all our experiments, we have used the cross-entropy loss which is a common
loss function used for classification.

A variant of the FGSM involves reducing the perturbation to smaller steps α and applying it over a
specified number of iterations, otherwise known as Iterative-FGSM [4]. In performing the iterations,
we make sure to clip pixel intensity values if they exceed some interval [a, b]. This is to ensure that
the perturbation does not go beyond the ε-neighbourhood of the original image. In our experiments,
we used images whose intensities were in [0, 1]. Iterative-FGSM can be understood by the following
equation where xadv,t represents the adversarial value at an intermediate time instant t:

xadv,0 = x, xadv,N+1 = clipx,ε (xadv,N + α · sign(∇x`(xadv,N , y, θ))) (2)

where generally α < ε and the clip operation is performed as follows, in the case where pixel values
lie in the interval [0, 1]:

clipx,ε(x
′) = min{1, x+ ε,max{0, x− ε, x′}}. (3)

2.2 Pixel attacks

In pixel attacks, only a handful of the pixels in an image are modified by adding relatively small
perturbations to the targeted pixels. Su, Vargas and Sakurai demonstrated in [5] that it is possible to
alter the output of a DNN in an extremely limited scenario where only one pixel is modified in an
image from the CIFAR-10 and ImageNet datasets. The targeted pixel is determined by Differential
Evolution - a population-based optimization algorithm. An advantage of this algorithm is that gradient
information is not required for optimization, hence it works even for objective functions that are
non-differentiable or even unknown.

3 Motivation and Approach

The space of “natural” images is assumed to lie in a low dimensional manifold of the entire real space.
The intuition behind the existence of adversarial examples is that they lie close to the space of the
“natural” images but their intrinsic dimensionality is high. Since, the adversarial images are close to
the original images, if we can somehow project the noisy image to a natural looking image and feed
the denoised image to the classifier, the classifier should do a good job at classification. The Robust
Manifold Defense paper exploits this idea and proposes a projection operator to make a classifier
robust against adversarial examples.

Finding a projection operator onto a space S requires one to know the geometry of S. That is too
strict a demand to make for the space of real looking images which one can expect to be highly
non-convex. But some of the recent work in generative modelling tries to solve exactly this problem
by using Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN). VAEs and
GANs have parts to them – Encoder (E) and Decoder (D). E takes an input vector v and outputs a
low-dimensional representation of v, say z ∈ Z. D uses z to construct a vector which is close to v.
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Training VAE and GANs require different approaches but they end up identifying the latent space Z
quite well. The generator, though not mimicking a projection operator (because the input and output
space of G are not of the same dimension), can be used to construct a projection operator.

Given an adversarial example, xadv , we would like to identify a zadv ∈ Z such that G(zadv) ≈ xadv .
This can be modelled as solving (arg minzadv

‖G(zadv)− xadv‖). Once we have such a zadv,
G(zadv) gives us a “natural” looking image such that it is similar to xadv. With this, we define our
projection operator, P , as follows:

P (x) = G

(
arg min

z∈Z
‖G(z)− x‖22

)
. (4)

This operator operates in two steps: (1) finds the closest latent space representation of x and (2) uses
that to construct a real looking image close to x. For any adversarial example, this is essentially
trying to approximate it with a smoothened version of the image which we hope looks like a “natural”
image because the decoder G has been trained to generate such images.

3.1 Setting up Robust Manifold Defense Model

We reproduce the Robust Manifold Defense Model described by Ilyas et al. [3]. The paper protects a
classifier C by projecting its inputs onto the range of a given generator G (decoder of a Variational
Autoencoder). The paper claims that this step provides the classifier with robustness against first-order
and combined adversarial attacks. This step can be considered as a prior P (x) defined on the space of
natural looking images. The authors call this formulation the Invert and Classify Algorithm (INC).
The INC algorithm can be described as follows,

• z∗ is obtained performing gradient descent in the z space to minimize ‖G(z)− x‖. Ideally,
z∗ = arg min ‖G(z)− x‖.

• The classifier is is applied on the projected input G(z∗) which outputs the class of the x

The INC algorithm is described in Algorithm 1.

Algorithm 1: Invert and Classify
Input :Image x, Generator G, Classifier C
Output :Predicted label

1 begin
2 z0 ∼ N (0, 1)
3 for t← 1 to T do
4 zt ← zt−1 − η

(
∇z‖x−G(z)‖22

)
5 end
6 z∗ ← zt
7 return C(G(z∗))

The invert and classify algorithm works as follows: given an input image x, the algorithm solves a
minimization problem to find a z∗ such that G(z∗) is close to the given image x and is a smoothened
version of the input image. G(z∗) is fed to the classifier. The paper solves the minimization problem
using gradient descent which makes it a non-differentiable method of projecting on the manifold.
This would not be easy to attack since a non-fixed number of gradient steps are required [3].

3.2 Problem setup

Dataset The dataset we use for our project is the MNIST handwritten digit database. The images
are grayscale images with pixel intensities lying in the interval [0, 1]. The MNIST images used in our
experiments were not pre-processed.

Naive Classifier (NC) We looked at two classifier models for our experiments. The first one is a
simple tensorflow classifier with the following network configuration:
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• Input size: 28× 28 images vectorized to 784 dimensional vectors
• Convolutional layer with ReLU activation followed by a max pooling layer: 5× 5 kernel,

32 filters, 2× 2 strides. Output size: 14× 14× 32

• Convolutional layer with ReLU activation followed by a max pooling layer: 5× 5 kernel,
64 filters, 2× 2 strides. Output size: 7× 7× 64

• Fully connected layer followed by a dropout: 1024 width
• Fully connected layer followed by softmax: 10 nodes with each node representing the

probability of that class
• Argmax on the output of the previous layer to get the predicted class

The loss function was chosen to be the cross-entropy loss and the Adam optimization algorithm was
employed to train the network to over 97% accuracy. We used a batch size of 32, 2000 epochs and a
dropout rate of 0.5.

Generative modelling For the generator G, we consider the decoder of a Variational Autoencoder
(VAE). The VAE architecture is as follows:

Encoder

• Input size: 784 dimensional vector
• Linear layer followed by a softplus

layer: 500 width
• Linear layer followed by a softplus

layer: 500 width
• Latent space of dimension 20, i.e., en-

coder outputs µ ∈ R20 and Σ ∈
R20×20

Decoder

• Input sampled from µ and Σ to get a
vector in R20

• Linear layer followed by a softplus
layer: 500 width
• Linear layer followed by a softplus

layer: 500 width
• Linear layer followed by sigmoid to get

a vector in [0, 1]784

Robust classifier (RC) The robust approach is exactly as defined in Algorithm 1.

4 Experiments and Our Methods

We elaborate on the various attack techniques performed on the Robust Manifold Defense model in
this section. Our attacks can be broadly divided into two major classes: gradient-based attacks and
non-gradient based attacks. All our experiments were conducted using Tensorflow.

4.1 Gradient-Based Attacks

The novelty of Robust Manifold Defense stems from the fact that the gradients are not directly
accessible. This makes it difficult to directly perform FGSM on it. The projection step is performed
iteratively and the number of steps taken is not fixed. Hence, in order to attack the algorithm, we
would have to attack the projection operation (Eq. 4). We compute xadv as follows,

xadv = x+ ε · sign(∇x`(Cθ(P (x)), y)) (5)

where Cθ is our classifier defined using the parameters θ. One idea would be to rely on numerical
methods to get the gradient. We can use first principles and go by the definition of gradient and use
that instead of the analytic gradient. To simplify notation, let, f(x) = `(Cθ(P (x)), y) and x ∈ Rd.
Let h be a small scalar which is used in the definition of the gradient. Also, let hj denote the d
dimensional vector with all coordinates but the jth coordinate set to h. With these, the algorithm has
been described in Algorithm 2.

4.1.1 Fast Gradient Sign Method (FGSM)

In our experiments, we picked ε ∈ {0.5, 1.0, 2.0} and h = 0.001. Table 1 summarizes the inaccuracy
in classification of the adversarial examples generated.
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Algorithm 2: Numerical gradient

Input :function f , h ∈ R, x ∈ Rd
Output :∇xf(x)

1 for j ← 1 to d do
2 (∇f(x))j ← f(x+hj)−f(x−hj)

2h

3 end
4 return ∇xf(x)

ε
# of adversarial

examples generated
Misclassification rate

(%)

0.05 150 19.3
0.1 150 22
0.2 150 24.7

Table 1: Misclassification rate using FGSM on the robust classifier

The success rate for misclassifying adversarial examples on the MNIST dataset is better than that
reported by Ilyas et al. [3] for their FGSM attack. In their experiments, misclassification rates were at
most 10% for ε ≤ 0.2. It should also be observed that the larger ε is, the noisier the generated image
is and the more perceptible the perturbation is to the human eye. Some examples of MNIST digit
images generated by FGSM are shown in Figure 1.

(a) ε = 0.05, original
label 7, classified as 9

(b) ε = 0.1, original
label 4, classified as 7

(c) ε = 0.2, original
label 6, classified as 2

Figure 1: Adversarial examples generated by FGSM on the robust classifier

4.1.2 Iterative Fast Gradient Sign Method (I-FGSM)

In order to try and improve the misclassification rate, a separate code was run to determine an
average number of iterations of I-FGSM to be performed to generate adversarial examples with
high confidence of misclassification. This average number of iterations turns out to be 6, but for
the purpose of our experiments with I-FGSM, 5 iterations were performed. Table 2 summarizes the
results obtained using I-FGSM to generate adversarial examples with h = 0.001.

ε
# of adversarial

examples generated
Misclassification rate

(%)

0.05 25 8
0.1 25 20
0.2 25 36

Table 2: Misclassification rate using I-FGSM on the robust classifier

Compared to the vanilla FGSM, I-FGSM produces adversarial images that achieves larger misclas-
sification rate for larger ε but is unable to match the performance when ε is less than 0.1. Sample
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adversarial images generated by I-FGSM are presented in Figure 2. Adversarial examples generated
by I-FGSM are perceivably less noisy as compared to their counterparts created through FGSM (as in
Figure 1), and this difference is more obvious at larger values of ε.

I-FGSM seems to be a better algorithm to create adversarial examples. However, there is a trade-off
as we need to perform more computation to create a single example. This is further made worse
because the numerical gradient computation is inherently slow because we need to iterate over each
pixel of the image.

(a) ε = 0.05, original
label 1, classified as 3

(b) ε = 0.1, original
label 3, classified as 8

(c) ε = 0.2, original
label 5, classified as 8

Figure 2: Adversarial Examples Generated by I-FGSM on the robust classifier

4.2 Max-Min attack

The above approaches used the gradient information to construct adversarial examples using the
FGSM algorithm. However, the projection step (Eq. 4) is robust enough and the misclassification rate
is low. If we dig deeper into the potential reason for this, it might be because the projection operator
is able to remove the adversarial perturbations for most of the adversarially constructed images. So to
defeat the Robust Classifier (RC), if we can find ways to misdirect the generator G to a “bad” z, then
one can hope that the classifier following that would predict an incorrect label.

This motivates our game theoretic formulation. Let v be the adversarial perturbation that is added to
our original image x and hence xadv = x + v. The projection step tries to solve the optimization
problem,

min
z
‖G(z)− xadv‖22 = min

z
‖G(z)− (x+ v)‖22. (6)

If we can design our v such that whatever the G does, we try to make it worse. This can be better
understood through the following optimization problem,

max
‖v‖∞≤ε

min
z
‖G(z)− (x+ v)‖22. (7)

Hence, we try to find a perturbation v which tries to make the projection step worse. By imposing
the constraint that ‖v‖∞ ≤ ε, we ensure that the adversarial perturbations are small and the image
xadv = x + v still resembles the original image x. Thus, when such a x + v is fed to RC, we
might hope that the projection operation doesn’t go through as nicely one would have hoped and
the classifier would misclassify with a higher probability. Note that this formulation is not optimal
because we would want to maximize the misclassification rate and this does not factor that in. But
this is the best we can do since any formulation involving the classifier C would be intractable
experimentally because the projection operator doesn’t have a closed form expression.

Relaxing the l∞ constraint, the above optimization problem is equivalent to solving two sub-problems
(SP1 and SP2),

SP1 : min
z
‖G(z)− (x+ v)‖22 (8)

SP2 : min
v
−‖G(z)− (x+ v)‖22 + λ‖v‖∞ (9)

where λ regulates the size of v.

4.2.1 Experiments

The VAE architecture described earlier was used for the experiments. Tensorflow’s Gradient Descent
Optimizer with a learning rate of 0.01 was used to optimize the two sub-problems. This experiment

6



was not too stable due to the difficulty involved in solving two sub problems of varying difficulties.
Note that solving this problem is similar to the training of GANs which is known to be unstable
and highly dependent on the parameter initialization. Furthermore, since SP1 is generally a harder
problem to optimize (because of the presence of a non-convex G), for every optimization step of
SP2, we take multiple gradient descent steps for SP1. We choose this number to be 5.

To solve both SP1 and SP2, we used a γ = 50. Such a large value of γ was important to constrain the
size of v to be small. With such hyper-parameter settings, we iterated for 10000 times until the value
of ‖G(z)− (x+ v)‖ had dropped down to about 0.03. Even with tuning γ extensively, we were able
to find v which had high ‖v‖∞. Figure 3 shows an image generated by this process. Unfortunately,
even with such a high perturbation, the RC did not misclassify.

Figure 3: Max-min attack. Left: original image, right: image obtained by solving the optimization
problem 7. ‖v‖∞ = 0.25, original label: 1, predicted label: 1

4.3 Attack by exploiting the geometry of Variational Autoencoders

Variational Autoencoders identify parts of the latent space which correspond to objects which
resemble each other closely. Since we wish to misclassify an image x, if we can add some small
noise v to it such that the encoder E of VAE identifies a latent space for x+ v which is different from
that of x, we can possibly try to fool the decoder G. So if we solve the optimization problem,

min
‖v‖∞≤ε

‖V AE(x+ v)− x′‖22 (10)

where V AE(.) represents the output of the Variational Autoencoder and x′ 6= x is the target image
that we want the VAE to output. By keeping the l∞ norm of v to be small, we ensure that x+ v looks
similar to the original image x. Relaxing the l∞ constraint, we get the problem,

min
v
‖V AE(x+ v)− x′‖22 + γ‖v‖∞ (11)

where γ controls the size of v.

4.3.1 Experiments

The same VAE architecture described in a previous section was used. The experiments were performed
with γ = 0.5 as it led to the best value of ‖v‖∞ ≤ 0.1. Eq. 11 was solved by using the Gradient
Descent Optimizer of Tensorflow by running the optimization for 10000 iterations. The iterations
converged quite quickly with a learning rate of 0.1. xadv = x + v was fed as input to RC and the
misclassification rate turned out to be around 17%.

Figure 4 plots images for two digits generated in the experiment. It is evident that the optimization
program is able to find small perturbations which can make the VAE predict a different digit for these
two cases. This was our observation for all the digits too—there exist small perturbations which
can help us get a target image x′. However, as we noted earlier that the misclassification rate with
this procedure was only 17% suggesting that the robust method is able to remove the adversarial
noise for most of the inputs. This can be explained by noting that even though we are able to fool the
encoder to represent the input digit differently, the projection step P (x) is quite robust and multiple
iterations involved in the projection step are able to remove the adversarial noise quite well so that
the classification turns out to be correct for the majority of digits.
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(a) ‖v‖∞ = 0.10, original label: 1, predicted label: 8

(b) ‖v‖∞ = 0.08, original label: 5, predicted label: 5

Figure 4: From left to right: original image (x), target image (x′), adversarial image (xadv = x+ v),
and output of VAE (V AE(xadv)). (a) shows an image which got misclassified by RC and (b) shows

an image which was classified correctly by RC

4.4 Single-Pixel and N-Pixel Attacks

In our pixel attack, we explore two brute-force variations of the pixel attack. For each experiment, a
proportion of pixels in the MNIST digit images were randomly chosen and modified in two separate
ways:

• Saturation: of the pixels to be attacked in the original image, if their intensities are less than
0.5, they are set to 1. Conversely, if the pixel’s intensity is greater than 0.5, they are set to 0.

new_pixel_value =

{
1 if pixel_value < 0.5

0 if pixel_value ≥ 0.5
(12)

• Midpoint: regardless of pixel intensity in the original image, the pixel intensity is set to 0.5.

new_pixel_value = 0.5 (13)

We perform pixel attacks on N ∈ {1, 8, 16, 40, 78} pixels of the MNIST digits which comprise 784
pixels each. This corresponds to a proportion of 0.001%, 1%, 2%, 5% and 10% of the pixels in each
image respectively. 1000 adversarial examples were generated in each experimental run and the
results are reported in Tables 3 and 4. Sample adversarial images which we generated are shown in
Figures 5 and 6.

Pixels attacked (%) # of pixels attacked
(N )

# of adversarial
examples generated

Misclassification rate
(%)

0.001 1 1000 18.5
1 8 1000 19.5
2 16 1000 20.3
5 40 1000 21.8

10 78 1000 28.2

Table 3: Misclassification rate of adversarial examples generated by N -pixel attack with varying N ,
using Saturation method
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From Table 3, misclassification rate increases as we increase the percentage of pixels that undergo
perturbations. However, the difference in misclassification rate is only 3.3% for a nearly 5% increase
in the number of pixels under attack.

(a) 1-pixel attack (b) 8-pixel attack (c) 16-pixel attack (d) 40-pixel attack

Figure 5: Adversarial examples by N-pixel attack. Top row: original images, bottom row: adversarial
examples using the Saturation method

% of pixels attacked # of pixels attacked
(N )

# of adversarial
examples

Misclassification
Rate (%)

0.001 1 1000 20.5
1 8 1000 19.0
2 16 1000 20.2
5 40 1000 19.2

10 78 1000 22.7

Table 4: Misclassification rate using N -pixel attack using the Midpoint method

In Table 4, we observe that the Midpoint method for N-pixel attack does not result in perceivable
impact to the classifier’s performance on the adversarial examples. Comparing the adversarial images
generated by the two variants of the N-pixel attack method in Figures 5 and 6, it is obvious that the
Saturation method creates adversaries that are more perceptible to the human eye.

(a) 1-pixel attack (b) 8-pixel attack (c) 16-pixel attack (d) 40-pixel attack

Figure 6: Adversarial examples by N-pixel attack. Top row: original images, bottom row: adversarial
examples using the Midpoint method
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5 Conclusion

In this project, we have explored various gradient-based, game-theoretic and pixel attack methods in
our attempt to defeat the Robust Manifold Defense by Ilyas et al [3]. Out of all these attacks, our
FSGM attack was more effective than the approach explored by Ilyas et al. - increasing misclassifi-
cation rates by at least 8 to 10%. Furthermore, iterative-FGSM caused the classifier to misclassify
on 36% of adversarial images when the maximum allowed perturbation was set to ε = 0.2. While
this result is better than what was reported in the original paper, we believe that a more thorough
investigation of our approaches would lead to a stronger attack on the defense algorithm. We also
have some unexplored ideas revolving around the use of GANs to learn to create adversarial examples
in an automated way.
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